Abstract
In warm inflation, dissipation due to the interactions of the inflaton field to other light degrees of freedom leads naturally to the enhancement of the primordial spectrum during the last 10-20 efolds of inflation. We study this effect in a variant of the Warm Little Inflaton model, where the inflaton couples to light scalars, with a quartic chaotic potential. These large fluctuations on re-entry will form light, evaporating Primordial Black Holes, with masses lighter than 106 g. But at the same time they will act as a source for the tensors at second order. The enhancement is maximal near the end of inflation, which result in a spectral density of Gravitational Waves (GW) peaked at frequencies f ∼ O(105-106) Hz today, and with an amplitude ΩGW ∼ 10-9. Although the frequency range is outside the reach of present and planned GW detectors, it might be reached in future high-frequency gravitational waves detectors, designed to search for cosmological stochastic GW backgrounds above MHz frequencies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.