Abstract
Gravitational radiation arising during the formation of a protoneutron star is studied. Here it is mainly large-scale nonuniformities that develop inside the star. The entropy and density profiles of such nonuniformities resemble the “mushroom cloud” of a nuclear explosion. A bubble of hot neutron matter floats to the surface of the star, like the “mushroom cloud” of an explosion in the earth’s atmosphere. Depending on the symmetry of the problem, from two to six bubbles can float upward at the same time. The characteristic masses of such bubbles are 0.01M⊗ and the radial velocities reach ∼0.1c. The energy radiated in the form of gravitational waves in one cycle of bubbles floating to the surface is ∼10−2M⊗c2−10−10M⊗c2. Such cycles occur repeatedly as the neutron star cools. This phase can last up to seconds. The total energy radiated in the form of gravitational radiation can reach 10−1M⊗c2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Experimental and Theoretical Physics Letters
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.