Abstract

Atmospheric gravity waves have been a subject of intense research activity in recent years because of their myriad effects and their major contributions to atmospheric circulation, structure, and variability. Apart from occasionally strong lower‐atmospheric effects, the major wave influences occur in the middle atmosphere, between ∼ 10 and 110 km altitudes because of decreasing density and increasing wave amplitudes with altitude. Theoretical, numerical, and observational studies have advanced our understanding of gravity waves on many fronts since the review by Fritts [1984a]; the present review will focus on these more recent contributions. Progress includes a better appreciation of gravity wave sources and characteristics, the evolution of the gravity wave spectrum with altitude and with variations of wind and stability, the character and implications of observed climatologies, and the wave interaction and instability processes that constrain wave amplitudes and spectral shape. Recent studies have also expanded dramatically our understanding of gravity wave influences on the large‐scale circulation and the thermal and constituent structures of the middle atmosphere. These advances have led to a number of parameterizations of gravity wave effects which are enabling ever more realistic descriptions of gravity wave forcing in large‐scale models. There remain, nevertheless, a number of areas in which further progress is needed in refining our understanding of and our ability to describe and predict gravity wave influences in the middle atmosphere. Our view of these unknowns and needs is also offered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call