Abstract
Gravity, ground magnetics, DC resistivity traversing, and time domain electromagnetic soundings (fixed-loop and in-loop) were conducted to investigate the Okauia Low Temperature Geothermal System near the eastern boundary of the Hauraki Depression in North Island of New Zealand. The gravity study revealed a hidden extension of the Tertiary-age Waiteariki Ignimbrite, underlying plio-Pleistocene alluvium deposits of the Hinuera Formation, which locally host an aquifer of warm geothermal fluids. A 3D magnetic model derived from the ground magnetic measurements helped identify probable paleo-channels within the sedimentary sequence of the Hinuera Formation. These paleo-channels could represent higher permeability at shallow (<50 m) depth, although the exact relationship between the locations of the surface thermal manifestations and identified paleo-channels is still unclear. The results of the resistivity surveys suggest that values less than 25 Ωm are indicative of the presence of warm waters at Okauia. Most warm water occurrences at Okauia take place near the Okauia Fault, particularly at 0 m RL (sea level) elevation. The near-surface extent of the Okauia Low Temperature Geothermal System can be approximated from the results of this study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.