Abstract

Starting from an idea of S.L. Adler~\cite{Adler2015}, we develop a novel model of gravity-induced spontaneous wave-function collapse. The collapse is driven by complex stochastic fluctuations of the spacetime metric. After deriving the fundamental equations, we prove the collapse and amplification mechanism, the two most important features of a consistent collapse model. Under reasonable simplifying assumptions, we constrain the strength $\xi$ of the complex metric fluctuations with available experimental data. We show that $\xi\geq 10^{-26}$ in order for the model to guarantee classicality of macro-objects, and at the same time $\xi \leq 10^{-20}$ in order not to contradict experimental evidence. As a comparison, in the recent discovery of gravitational waves in the frequency range 35 to 250 Hz, the (real) metric fluctuations reach a peak of $\xi \sim 10^{-21}$.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call