Abstract

The paper presents a method to model the time-dependent evaporation of pendant drops taking into account the effect of drop deformation induced by gravity. The model is based on the solution to the time-dependent drop mass and energy conservation equations, where the mass and energy fluxes through the gas mixture are numerically evaluated for a range of Bond numbers and contact angles. The evaporation characteristics of pendant and sessile drops on hydrophobic and hydrophilic substrates are compared in terms of evaporation times and evaporative cooling, for both constant contact angle and constant contact radius modes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.