Abstract
Global static gravitational field determined by GOCE satellite data has become a hotspot in current research of geodesy. In this paper, a global static gravity field model entitled SWJTU-GO01S up to the degree and order 210 is recovered based on 12 months of GOCE orbit and gradient data from 2011-02-28 to 2012-03-05 with direct approach. GOCE gradient data are filtered by the zero phase finite impulse band-pass digital filter, and then a gradient observation equation is founded directly in gradiometer coordinates, which avoids high-accuracy gradient component loss in accuracy in the conversion process, while the orbit data is processed with short-arc integral approach. The optimal weight of combination result based on SST and SGG data is determined by variance component estimation and the polar gaps is dealt with the Kuala regularization method. Comparison of internal and external precision of SWJTU-GO01S with EGM2008 and with GPS leveling data of North America, shows that the geoid error and cumulative error of the SWJTU-GO01S model with the degree and order 210 are 2.1 cm and 13.7 cm respectively. Compared with the second generation models released by ESA and ITG-GRACE2010S, the accuracy of the model SWJTU-GO01S is higher than that of the model ITG-GRACE2010S and ESA official time-wise and space-wise model in the above degree and order 150. This study provides a reference to further joint multi-class satellite observation data to recover gravity field models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.