Abstract

The flow of a thermoviscous body at elevated temperature under gravity is described by the mass, momentum, and energy balances of an incompressible, homogeneous, heat conducting, nonlinearly viscous fluid, in which the shear response includes a strongly temperature‐dependent rate factor. A scale analysis and coordinate stretching, appropriate for flows down an inclined surface, reflect the properties that depth‐to‐length ratios are different in both the “downhill” direction and perpendicular to it and that the flow is essentially from higher altitudes to lower ones. The normalized energy equation shows that, for the applications considered, in‐plane and out‐of plane (transverse) advections are important and that transverse diffusion and dissipation are both significant. Analogously, the stress‐deviator‐stretching relationship exhibits a conspicuous temperature dependence. Hence, there is strong ther-momechanical coupling. The small aspect ratio parameters of the nondimensional equations permit deduction o...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.