Abstract

In the geological sequestration of carbon dioxide (CO2), residual gas trapping plays an important role in immobilizing CO2. In this study, we investigate the propagation of gravity currents with residual gas trapping in a two-layered porous medium. We first formulate a model for a constant-flux release of a relatively less dense fluid (CO2) from a point source into a porous medium bounded above by a horizontal less-permeable seal. After a constant-flux release ceases, a fraction of the released fluid remains within the porous spaces at the trailing edge because of the capillary forces. This capillary retention is formulated in a model of gravity currents of a finite-volume release in the two-layered medium. In the latter model, the plume shape at the end of the constant-flux release is used as an initial profile. Using these models sequentially, the propagation of both cross-sectional and axisymmetric currents is quantitatively examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.