Abstract

Gravity currents from instantaneous sources down a slope were modeled with classic thermal theory, which has formed the basis for many subsequent studies. Considering entrainment of ambient fluid and conservation of total buoyancy, thermal theory predicted the height, length, and velocity of the gravity current head. In this study, the problem with direct numerical simulations was re-investigated, and the results compared with thermal theory. The predictions based on thermal theory are shown to be appropriate only for the acceleration phase, not for the entire gravity current motion. In particular, for the current head forms on a 10° slope produced from an instantaneous buoyancy source, the contained buoyancy in the head is approximately 58% of the total buoyancy at most and is not conserved during the motion as assumed in thermal theory. In the deceleration phase, the height and aspect ratio of the head and the buoyancy contained within it may all decrease with downslope distance. Thermal theory relies o...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.