Abstract

One of the types of gravitational scattering in the Solar system within the framework of the model of the restricted three-body problem (R3BP) is gravity assist maneuvers of the “particles of insignificant mass” [1] (spacecraft, asteroids, comets, etc.). For their description, a physical analogy with the beam scattering of charged α particles in a Coulomb field is useful. However, unlike the scattering of charged particles, there are external restrictions for the possibility of gravity assists executing related from the restricted size of planet’s sphere of influence. At the same time, internal restrictions for the gravity assists performance estimated by the effective radii of planets are known from the literature on R3BP [2] (gravitational capture by the planet, falling into it). They depend from the particle asymptotic velocity relative the planet. For obvious reasons, their influence cuts off the possibility of effective gravity assists performance [3]. In this work the generalized estimates of the sizes of the near-planetary regions (“perturbation rings”), falling into which is a necessary condition for the implementation of gravity assists, are presented. The detailed analysis shows that Neptune and Saturn have the characteristic “perturbation rings” of the largest sizes in the Solar system, and Jupiter occupies only the fourth place in this checklist.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call