Abstract

We study the graviton contribution and the topological effects of antipodal identification in constant curvature solutions of semiclassical Einstein equations. We analyze the curvature R as a function of the cosmological constant Γ, of the topology (labelled here by a discrete parameter σ), and of the trace anomaly λ, the mass m and the coupling ξ of quantum matter fields. For m=0, we find eight possible (some of them classically forbidden) configurations depending on the graviton-matter balance. Even if Γ>0, R can be negative and even if Γ≠0, R goes to zero when N (the number of matter fields) goes to infinity. For m≠0 we find five characteristic types of behaviours depending on the values of ξ and σ. The “back-reaction” effects of the topology appear more important for small ξ and increasing R.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.