Abstract

We study the production of spin 1/2 gravitinos in a thermal Universe. Taking into account supersymmetry breaking due to the finite thermal energy density of the Universe, there is a large enhancement in the cross section of production of these gravitino states. We consider gravitinos with zero temperature masses of 0.1 eV, 1 keV, 100 GeV and 30 TeV as representative of gauge mediated, gravity mediated and anomaly mediated supersymmetry breaking scenarios. We find that the abundance of gravitinos produced in the early Universe is very high for gravitinos of mass 1 keV and 100 GeV. The gravitino abundances can be sufficiently suppressed if the reheat temperature is less than 100 GeV and 4×104GeV respectively. However such low reheat temperatures will rule out many models of baryogenesis including those via leptogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.