Abstract

The cosmological moduli problem for relatively heavy moduli fields is reinvestigated. For this purpose we examine the decay of a modulus field at a quantitative level. The modulus dominantly decays into gauge bosons and gauginos, provided that the couplings among them are not suppressed in the gauge kinetic function. Remarkably the modulus decay into a gravitino pair is unsuppressed generically, with a typical branching ratio of order 0.01. Such a large gravitino yield after the modulus decay causes cosmological difficulties. The constraint from the big-bang nucleosynthesis pushes up the gravitino mass above 10^5 GeV. Furthermore to avoid the over-abundance of the stable neutralino lightest superparticles (LSPs), the gravitino must weigh more than about 10^6 GeV for the wino-like LSP, and even more for other neutralino LSPs. This poses a stringent constraint on model building of low-energy supersymmetry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.