Abstract

The so-called “global polytropic model” is based on the assumption of hydrostatic equilibrium for the solar system, or for a planet’s system of statellites (like the Jovian system), described by the Lane-Emden differential equation. A polytropic sphere of polytropic index n and radius R1 represents the central component S1 (Sun or planet) of a polytropic configuration with further components the polytropic spherical shells S2, S3, ..., defined by the pairs of radi (R1, R2), (R2, R3), ..., respectively. R1, R2, R3, ..., are the roots of the real part Re(θ) of the complex Lane-Emden function θ. Each polytropic shell is assumed to be an appropriate place for a planet, or a planet’s satellite, to be “born” and “live”. This scenario has been studied numerically for the cases of the solar and the Jovian systems. In the present paper, the Lane-Emden differential equation is solved numerically in the complex plane by using the Fortran code DCRKF54 (modified Runge-Kutta-Fehlberg code of fourth and fifth order for solving initial value problems in the complex plane along complex paths). We include in our numerical study some trans-Neptunian objects.

Highlights

  • In this study, we approach the issue on “gravitational quantization of orbits” in the solar system, or in systems of satellites of planets, by exclusively considering laws of classical mechanics

  • We use the gfortran compiler, licensed under the GNU General Public License (GPL; http://www.gnu.org/licenses/gpl.html). gfortran is the name of the GNU Fortran compiler belonging to the GNU Compiler Collection (GCC; http://gcc.gnu.org/)

  • It is worth emphasizing that in this study the solar and Jovian systems are considered within the framework of classical mechanics

Read more

Summary

Introduction

We approach the issue on “gravitational quantization of orbits” in the solar system, or in systems of satellites of planets, by exclusively considering laws of classical mechanics. We take as basis of our treatment the equations of hydrostatic equilibrium for a nondistorted star or planet. These equations yield the well-known Lane-Emden differential equation, which is solved in the complex plane by using the so-called “complex plane strategy” (Section 2), developed by the first author for numerical treatment of certain astrophysical problems Classical mechanics is used by some authors for treating this issue (see e.g. in [3] the so-called “vibrating membrane model”).

The Lane-Emden Equation in the Framework of the Complex-Plane Strategy
The Global Polytropic Model
The Computations
Numerical Results and Discussion
Satellites of the Jovian System
Planets of the Solar System
Trans-Neptunian Objects
Remarks and Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.