Abstract

The study of interactions between dark matter and the Higgs field opens an exciting connection between cosmology and particle physics, since such scenarios can impact the features of dark matter as well as interfering with the spontaneous breaking of the electroweak symmetry. Furthermore, such Higgs-portal models of dark matter should be suitably harmonised with the various epochs of the universe and the phenomenological constraints imposed by collider experiments. At the same time, the prospect of a stochastic gravitational wave background offers a promising new window into the primordial universe, which can complement the insights gained from accelerators. In this study, we examined whether gravitational waves can be generated from a curvature-induced phase transition of a non-minimally coupled dark scalar field with a portal coupling to the Higgs field. The main requirement is that the phase transition is of first order, which can be achieved through the introduction of a cubic term on the scalar potential and the sign change of the curvature scalar. This mechanism was investigated in the context of a dynamical spacetime during the transition from inflation to kination, while also considering the possibility for inducing electroweak symmetry breaking in this manner for a sufficiently low reheating temperature when the Higgs-portal coupling is extremely weak. We considered a large range of inflationary scales and both cases of positive and negative values for the non-minimal coupling, while taking into account the bound imposed by Big Bang Nucleosythesis. The resulting gravitational wave amplitudes are boosted by kination and thus constrain the parameter space of the couplings significantly. Even though the spectra lie at high frequencies for the standard high inflationary scales, there are combinations of parameter space where they could be probed with future experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.