Abstract

The construction of ready to use templates for gravitational waves from spinning binaries is an important challenge in the investigation of detectable gravitational wave signals. Here we present a method to evaluate the gravitational wave polarization states for inspiralling compact binaries in the extreme mass ratio limit. We discuss the effects caused by the rotation of the central massive object for eccentric orbits in the Lense-Thirring approximation and give the formal expressions of the polarization states including higher order corrections. Our results are in agreement with existing calculations for the spinless and circular orbit limits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.