Abstract

The electrical resistivity of the accreted mountain in a millisecond pulsar is limited by the observed spin-down rate of binary radio millisecond pulsars (BRMSPs) and the spins and X-ray fluxes of accreting millisecond pulsars (AMSPs). We find $\eta \ge 10^{-28}\,\mathrm{s}\, (\tau_\mathrm{SD}/1\,\mathrm{Gyr})^{-0.8}$ (where $\tau_\mathrm{SD}$ is the spin-down age) for BRMSPs and $\eta \ge 10^{-25}\,\mathrm{s}\,(\dot{M}_\mathrm{a}/\dot{M}_\mathrm{E})^{0.6}$ (where $\dot{M}_\mathrm{a}$ and $\dot{M}_\mathrm{E}$ are the actual and Eddington accretion rates) for AMSPs. These limits are inferred assuming that the mountain attains a steady state, where matter diffuses resistively across magnetic flux surfaces but is replenished at an equal rate by infalling material. The mountain then relaxes further resistively after accretion ceases. The BRMSP spin-down limit approaches the theoretical electron-impurity resistivity at temperatures $\ga 10^5$ K for an impurity concentration of $\sim 0.1$, while the AMSP stalling limit falls two orders of magnitude below the theoretical electron-phonon resistivity for temperatures above $10^8$ K. Hence BRMSP observations are already challenging theoretical resistivity calculations in a useful way. Next-generation gravitational-wave interferometers will constrain $\eta$ at a level that will be competitive with electromagnetic observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.