Abstract

Recently, a braking index for the pulsar PSR J1640-4631 has been measured. With a braking index of n = 3.15 ± 0.03, this pulsar has the highest braking index ever measured. As it is well known, a pure magnetic dipole brake yields n = 3, whereas a pure gravitational wave (GW) brake yields n = 5. Therefore, each of these mechanisms alone can not account for the braking index found for PSR J1640-4631. Here we consider in detail that such a braking index could be accounted for if the spindown model combines magnetic dipole and GW brakes. Then, we briefly discuss the detectability of this pulsar by aLIGO and the planned Einstein Telescope. In particular, we show that the amplitude of the GW that comes from our model is around a factor four lower than the amplitude modeled exclusively by GW energy loss. Another interesting outcome of our modeling is that it is possible to obtain the ellipticity from the braking index and other pulsar parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.