Abstract
Building on a series of earlier papers [gr-qc/9604007, gr-qc/9604008, gr-qc/9604009], I investigate the various point-wise and averaged energy conditions in the Unruh vacuum. I consider the quantum stress-energy tensor corresponding to a conformally coupled massless scalar field, work in the test-field limit, restrict attention to the Schwarzschild geometry, and invoke a mixture of analytical and numerical techniques. I construct a semi-analytic model for the stress-energy tensor that globally reproduces all known numerical results to within 0.8%, and satisfies all known analytic features of the stress-energy tensor. I show that in the Unruh vacuum (1) all standard point-wise energy conditions are violated throughout the exterior region--all the way from spatial infinity down to the event horizon, and (2) the averaged null energy condition is violated on all outgoing radial null geodesics. In a pair of appendices I indicate general strategy for constructing semi-analytic models for the stress-energy tensor in the Hartle-Hawking and Boulware states, and show that the Page approximation is in a certain sense the minimal ansatz compatible with general properties of the stress-energy in the Hartle-Hawking state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.