Abstract

The wave equation for a scalar field ψ is solved in the background metric of a new theory of gravity, based on a non-Riemannian field structure with a nonsymmetric Hermitian gμν. In contrast to the solution of the problem in a Schwarzschild background metric, in which only orbits close to r ~ 3M yield significant gravitational radiation, the new metric leads to an effective potential with stable orbits for a substantial range of r. The solution yields ψ = (1 − ℓ4/r4)−1/2ψGR where ℓ is a new integration constant. The null surface r = ℓ determines an astrophysical object called a "deflectar", which for ℓ > 2M conceals the Schwarzschild black-hole event horizon at r = 2M. As r → ℓ the gravitational synchrotron radiation increases to infinity. The actual power output of gravitational radiation for physically allowed stable orbits closest to r = ℓ is estimated, demonstrating that a deflectar is a potentially strong source of gravitational radiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call