Abstract

Gravitation General relativity predicts that light emitted by an object in a strong gravitational field—for example, close to a black hole—should be shifted to longer wavelengths. This gravitational redshift does not exist in the Newtonian theory of gravity. Do et al. monitored the position and spectrum of the star S0-2 as it passed Sagittarius A*, the supermassive black hole at the center of the Milky Way. Around the closest part of S0-2's 16-year orbit, they detected the effect of gravitational redshift on its spectrum. These results are more consistent with general relativity than Newtonian gravity at the 5σ level. Science , this issue p. [664][1] [1]: /lookup/doi/10.1126/science.aav8137

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.