Abstract

In this paper, we discuss the leading order correction to the equation of motion of the particle, which presumably describes the effect of gravitational radiation reaction. We derive the equation of motion in two different ways. The first one is an extension of the well-known formalism by DeWitt and Brehme developed for deriving the equation of motion of an electrically charged particle. In contrast to the electromagnetic case, in which there are two different charges, i.e., the electric charge and the mass, the gravitational counterpart has only one charge. This fact prevents us from using the same renormalization scheme that was used in the electromagnetic case. To make clear the subtlety in the first approach, we then consider the asymptotic matching of two different schemes, i.e., the internal scheme in which the small particle is represented by a spherically symmetric black hole with tidal perturbations and the external scheme in which the metric is given by small perturbations on the given background geometry. The equation of motion is obtained from the consistency condition of the matching. We find that in both ways the same equation of motion is obtained. The resulting equation of motion is analogous to that derived in the electromagnetic case. We discuss implications of this equation of motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.