Abstract

We study the radiation of gravitational waves by self-gravitating binary systems in the low-energy limit of Ho\ifmmode \check{r}\else \v{r}\fi{}ava gravity. We find that the predictions for the energy-loss formula of general relativity are modified already for Newtonian sources: the quadrupole contribution is altered, in part due to the different speed of propagation of the tensor modes; furthermore, there is a monopole contribution stemming from an extra scalar degree of freedom. A dipole contribution only appears at higher post-Newtonian order. We use these findings to constrain the low-energy action of Ho\ifmmode \check{r}\else \v{r}\fi{}ava gravity by comparing them with the radiation damping observed for binary pulsars. Even if this comparison is not completely appropriate---since compact objects cannot be described within the post-Newtonian approximation---it represents an order of magnitude estimate. In the limit where the post-Newtonian metric coincides with that of general relativity, our energy-loss formula provides the strongest constraints for Ho\ifmmode \check{r}\else \v{r}\fi{}ava gravity at low-energies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.