Abstract

Recent X-ray observations of galaxies with ROSAT, ASCA, and Chandra have revealed numerous bright off-center point sources that, if isotropic emitters, are likely to be intermediate-mass black holes, with M ~ 102-104 M☉. The origin of these objects is under debate, but observations suggest that a significant number of them currently reside in young high-density stellar clusters. There is also growing evidence that some Galactic globular clusters harbor black holes of similar mass, from observations of stellar kinematics. In such high-density stellar environments, the interactions of intermediate-mass black holes are promising sources of gravitational waves for ground-based and space-based detectors. Here we explore the signal strengths of binaries containing intermediate-mass black holes or stellar-mass black holes in dense stellar clusters. We estimate that a few to tens per year of these objects will be detectable during the last phase of their inspiral with the advanced Laser Interferometer Gravitational-Wave Observatory detector, and up to tens per year will be seen during merger, depending on the spins of the black holes. We also find that if these objects reside in globular clusters, then tens of sources will be detectable with the Laser Interferometer Space Antenna from the Galactic globular system in a 5 yr integration, and similar numbers will be detectable from more distant galaxies. The signal strength depends on the eccentricity distribution, but we show that there is promise for strong detection of pericenter precession and Lense-Thirring precession of the orbital plane. We conclude by discussing what could be learned about binaries, dense stellar systems, and strong gravity if such signals are detected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.