Abstract
Dark sectors with purely gravitational couplings to the Standard Model are unavoidably populated from the SM plasma by graviton exchange, and naturally provide dark matter candidates. We examine the production in the relativistic regime where the dark sector is approximately scale invariant, providing general analytical formulas that depend solely on the central charge of the dark sector. We then assess the relevance of interactions that can lead to a variety of phenomena including thermalisation, non-perturbative mass gaps, out-of-equilibrium phase transitions and cannibalism in the dark sector. As an illustrative example we consider the dark glueball scenario in this light and show it to be a viable dark matter candidate due to the suppression of gravitational production. We go on to extend these results to strongly coupled CFTs and their holographic duals at large-N with the dark dilaton as the dark matter candidate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.