Abstract

Assessing the stability of higher-dimensional rotating black holes requires a study of linearized gravitational perturbations around such backgrounds. We study perturbations of Myers-Perry black holes with equal angular momenta in an odd number of dimensions (greater than five), allowing for a cosmological constant. We find a class of perturbations for which the equations of motion reduce to a single radial equation. In the asymptotically flat case we find no evidence of any instability. In the asymptotically anti-de Sitter case, we demonstrate the existence of a superradiant instability that sets in precisely when the angular velocity of the black hole exceeds the speed of light from the point of view of the conformal boundary. We suggest that the endpoint of the instability may be a stationary, nonaxisymmetric black hole.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.