Abstract

An analytical gravitational perturbation theory for the intersatellite tracking range and range-rate measurement between two satellites is developed. The satellite-to-satellite tracking (SST) range data measure the difference between the position perturbations of two satellites along the direction of the intersatellite range. The SST range-rate data measure the difference between the velocity perturbations along the direction of the intersatellite range, and the difference of the position perturbation along the direction perpendicular to the intersatellite range (cross-range). The SST range and range rate depend on different orbital excitations for mapping the gravity field. For the Gravity Recovery and Climate Experiment (GRACE), approximately 97% of the geopotential coefficient pairs produce perturbations with a root-mean-square larger than 1 m on the range and 0.1 m/sec on the range rate based on the EGM96 gravity field truncated at degree and order 140. Results in this study showed that ocean tides produce significant perturbations in the range and range-rate measurements. An ocean tide field with a higher degree and order (>70) is required to model the ocean tide perturbations on the intersatellite range and range-rate measurement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.