Abstract

We study gravitational absorption effects using effective on-shell scattering amplitudes. We develop an in-in probability-based framework involving plane- and partial-wave coherent states for the incoming wave to describe the interaction of the wave with a black hole or another compact object. We connect this framework to a simplified single-quantum analysis. The basic ingredients are mass-changing three-point amplitudes, which model the leading absorption effects and a spectral-density function of the black hole. As an application, we consider a non-spinning black hole that may start spinning as a consequence of the dynamics. The corresponding amplitudes are found to correspond to covariant spin-weighted spherical harmonics, the properties of which we formulate and make use of. We perform a matching calculation to general-relativity results at the cross-section level and derive the effective absorptive three-point couplings. They are found to behave as OGNewtons+1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{O}\\left({G}_{\ extrm{Newton}}^{s+1}\\right) $$\\end{document}, where s is the spin of the outgoing massive state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call