Abstract

This paper presents a simple and straightforward method for carrying out the direct numerical solution of the eigenvalue problem associated to the homogeneous linear shallow-water equations expressed using orthogonal curvilinear coordinates, when ‘adiabatic’ boundary conditions apply. These equations, together with the boundary conditions, define a self-adjoint problem in the continuum. The method presented here, which is thought for calculating the 2-D theoretical gravity modes of both natural and artificial basins, relies on a change of basis of the dependent variable vector. This preliminary transformation makes it, in fact, possible to formulate two different numerical approaches which guarantee the self-adjoint property of the discrete form of the system consisting of the governing equations and the boundary conditions. The method is tested using a square and a fully circular domain, both of which allow comparisons with well-known analytical and numerical solutions. Discretizing the physical domain of a fully circular basin by a cylindrical coordinate grid makes it possible to show the actual efficiency of the method in calculating the theoretical gravity modes of basins discretized by a boundary-following coordinate grid which allows laterally variable resolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.