Abstract
The accretion of dark matter around the primordial black holes (PBHs) could lead to the formation of surrounding minihalos, whose mass can be several orders of magnitude higher than the central PBH mass. The gravitational microlensing produced by such dressed PBHs could be quite different from that of the bare PBHs, which may significantly affect the constraints on the PBH abundance. In this paper, we study the gravitational microlensing produced by dressed PBHs in detail. We find that all the microlensing effects by dressed PBHs have asymptotic behavior depending on the minihalo size, which can be used to predict the microlensing effects by comparing the halo size with the Einstein radius. When the minihalo radius and the Einstein radius are comparable, the effect of the density distribution of the halo is significant to the microlensing. Applying the stellar microlensing by dressed PBHs to the data of the Optical Gravitational Lensing Experiment and Subaru/HSC Andromeda observations, we obtain the improved constraints on the PBH abundance. It shows that the existence of dark matter minihalos surrounding PBHs can strengthen the constraints on the PBH abundance from stellar microlensing by several orders, and can shift the constraints to the well-known asteroid mass window where PBHs can constitute all the dark matter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.