Abstract

We investigate the influence of plasma presence on relativistic images formed by Schwarzschild black hole lensing. When a gravitating body is surrounded by a plasma, the lensing angle depends on a frequency of the electromagnetic wave due to refraction properties, and the dispersion properties of the light propagation in gravitational field in plasma. The last effect leads to a difference, even in uniform plasma, of the gravitational deflection angle in plasma from the vacuum case. This angle depends on the photon frequency, which resembles the properties of the refractive prism spectrometer. Here we consider the case of a strong deflection angle for the light, traveling near the Schwarzschild black hole, surrounded by a uniform plasma. Asymptotic formulas are obtained for the case of a very large deflection angle, exceeding $2\ensuremath{\pi}$. We apply these formulas for calculation of position and magnification of relativistic images in a homogeneous plasma, which are formed by the photons performing one or several revolutions around the central object. We conclude that the presence of the uniform plasma increases the angular size of relativistic rings or the angular separation of point images from the gravitating center. The presence of the uniform plasma increases also a magnification of relativistic images. The angular separation and the magnification become significantly larger than in the vacuum case, when the photon frequency goes to a plasma frequency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.