Abstract

AbstractThe combined influence of the effects of Hall currents, magnetic resistivity and viscosity have been studied on the gravitational instability of a thermally conducting homogeneous unbounded plasma in an oblique magnetic field. The solution has been obtained through the normal mode technique and the dispersion relation has been derived. It is shown that the Jeans' criterion for gravitational instability remains unchanged. Solving numerically the dispersion relation, the dependence of the growth rate of the gravitational unstable mode on the considered physical effects has been obtained for an astrophysical situation. For conditions prevailing in the magnetized collapsing clouds, the numerical calculations for the plot of growth rate against wave number has been obtained for several values of the parameters characterizing Hall currents magnetic resistivity viscosity thermal conductivity. It is found that magnetic resistivity and thermal conductivity have destabilizing influence while viscosity has stabilizing influence on the instability of the plasma of disturbance m(ϱ) = 9 × 10−3 kg.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call