Abstract

Gravitational instability of the dust layer formed after the aggregates of dust particles settle toward the midplane of a protoplanetary disk under turbulence is considered. A linearized system of hydrodynamic equations for perturbations of dust (monodisperse) and gas phases in the incompressible gas approximation is solved. Turbulent diffusion and the velocity dispersion of solid particles and the perturbation of gas azimuthal velocity in the layer upon the transfer of angular momentum from the dust phase due to gas drag are taken into account. Such an interaction of the particles and the gas establishes upper and lower bounds on the perturbation wavelength that renders the instability possible. The dispersion equation for the layer in the case when the ratio of surface densities of the dust phase and the gas in the layer is well above unity is obtained and solved. An approximate gravitational instability criterion, which takes the size-dependent stopping time of a particle (aggregate) in the gas into account, is derived. The following parameters of the layer instability are calculated: the wavelength range of its subsistence and the dependence of the perturbation growth rate on the perturbation wavelength in the circumsolar disk at a radial distance of 1 and 10 AU. It is demonstrated that at a distance of 1 AU, the gas–dust disk should be enriched with solids by a factor of 5–10 relative to the initial abundance as well as the particle aggregates should grow to the sizes higher than about 0.3 m in order for the instability to emerge in the layer in the available turbulence models. Such high disk enrichment and aggregate growth is not needed at a distance of 10 AU. The conditions under which this gravitational instability in the layer may be examined with no allowance made for the transfer of angular momentum from the gas in the layer to the gas in a protoplanetary disk outside the layer are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.