Abstract
The problem of Rayleigh-Benard convection in a ferromagnetic fluid saturated porous medium with the Maxwell-Cattaneo law is studied by the method of small perturbation. Modified Darcy-Brinkman model is used to describe the fluid motion. The horizontal porous layer is cooled from the upper boundary, while an isothermal boundary condition is imposed at the lower boundary. The non-classical Maxwell-Cattaneo heat flux law involves a wave type heat transport and does not suffer from the physically unacceptable drawback of infinite heat propagation speed. The resulting eigenvalue problem is solved exactly for simplified boundary conditions and the thresholds for the marginal stability are determined. Some of the known cases are derived as special cases. The influence of porous, magnetic, and non-magnetic parameters on the onset of ferroconvection has been analyzed. It is found that the Benard problem for a Maxwell-Cattaneo ferromagnetic fluid is always less stable than the classical ferroconvection problem. It is shown that the destabilizing influence of the Cattaneo number is not attenuated by that of magnetic forces and vice versa, and that the aspect ratio of the convection cells changes when the parameters involved in the study vary with the porous structure bringing out considerable influence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.