Abstract

Abstract We discuss the possibility that gravitational focusing is responsible for the power-law mass function of star clusters . This power law can be produced asymptotically when the mass accretion rate of an object depends upon the mass of the accreting body, as . Although Bondi–Hoyle–Lyttleton accretion formally produces this dependence on mass in a uniform medium, realistic environments are much more complicated. However, numerical simulations in SPH that allow for sink formation yield such an asymptotic power-law mass function. We perform pure N-body simulations to isolate the effects of gravity from those of gas physics and to show that clusters naturally result with the power-law mass distribution. We also consider the physical conditions necessary to produce clusters on appropriate timescales. Our results help support the idea that gravitationally dominated accretion is the most likely mechanism for producing the cluster mass function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.