Abstract

This study numerically examines the gravitational effect on the nonlinear dynamics of a buoyant turbulent flame utilizing analytical methods based on complex networks and dynamical systems. A dense (sparse) network structure is formed in the near (far) field in low gravity, as shown by the degree and cluster coefficient in the spatial network. The global dynamics of the vertical flow velocity fluctuations in the intermittent luminous zone is synchronous with that of the temperature fluctuations in low gravity. The synchronized state disappears as the gravity level is increased, leading to a desynchronized state. These behaviors are clearly identified by the symbolic recurrence plots.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call