Abstract

The Earth’s core was formed under gravitational differentiation in the course of the separation of iron and silicates. Most of the iron has gone into the core as early as when the Earth was growing. However, iron continued to precipitate even during the subsequent partial solidification which developed from the bottom upwards. At the different stages and in the different layers of the mantle, iron was deposited in different regimes. In this paper, the mechanisms of the deposition of a cloud of heavy interacting particles (or drops) in a viscous fluid are considered. A new approach suitable for analytical and numerical tracing the changes in the structure of the flows in a two-component suspension under continuous transition from the Stokessettling (for the case of a cloud of large particles) to the Rayleigh–Taylor flows and heavy diapirs (for the case of a cloud of small particles) is suggested. It is numerically and analytically shown that the both regimes are the different limiting cases of the sedimentation convection in suspensions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.