Abstract

Massive star (M ≥ 10 M ) core collapse is the standard mechanism for neutron star formation (see Brown 1988 for a recent review). It has long been realized (see, for instance, van den Heuvel 1988, and references therein) that the neutron stars found in different types of binary systems cannot come from such a standard mechanism. Those systems include wide binary radio pulsars, millisecond pulsars (not in wide binaries), galactic bulge X–ray sources (including QPO’s), type I X–ray burst sources and X–ray transients, andγ–ray sources. Formation of those neutron stars is now widely attributed to the gravitational collapse of a white dwarf, growing above Chandrasekhar’s limit by mass accretion from the current neutron star’s companion in the binary system (Canal and Schatzman 1976; Canal and Isern 1979; Canal, Isern, and Labay 1980; Miyaji et al. 1980). Mass growth up to dynamical instability means that both explosive ejection of the accreted layers and explosive disruption of the whole star must be avoided. The former is associated with the nova phenomenon. The latter, with the occurrence of type I supernovae.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.