Abstract

We construct the first analytic examples of self-gravitating anisotropic merons in the Einstein-Yang-Mills-Chern-Simons theory in three dimensions. The gauge field configurations have different meronic parameters along the three Maurer-Cartan 1-forms and they are topologically nontrivial as the Chern-Simons invariant is nonzero. The corresponding backreacted metric is conformally a squashed three-sphere. The amount of squashing is related to the degree of anisotropy of the gauge field configurations that we compute explicitly in different limits of the squashing parameter. Moreover, the spectrum of the Dirac operator on this background is obtained explicitly for spin-1/2 spinors in the fundamental representation of SU(2), and the genuine non-Abelian contributions to the spectrum are identified. The physical consequences of these results are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.