Abstract

Lipid bilayers containing 5% nitrilotriacetic acid (NTA) lipids supported on SiO 2 have been used as a template for immobilization of oligohistidine-tagged single-chained antibody fragments (scFvs) directed against cholera toxin. It was demonstrated that histidine-tagged scFvs could be equally efficiently coupled to an NTA–Ni 2+-containing lipid bilayer from a purified sample as from an expression supernatant, thereby providing a coupling method that eliminates time-consuming protein prepurification steps. Irrespective of whether the coupling was made from the unpurified or purified antibody preparation, the template proved to be efficient for antigen (cholera toxin) detection, verified using quartz crystal microbalance with dissipation monitoring. In addition, via a secondary amplification step using lipid vesicles containing G M1 (the natural membrane receptor for cholera toxin), the detection limit of cholera toxin was less than 750 pM. To further strengthen the coupling of scFvs to the lipid bilayer, scFvs containing two histidine tags, instead of just one tag, were also evaluated. The increased coupling strength provided via the bivalent anchoring significantly reduced scFv displacement in complex solutions containing large amounts of histidine-containing proteins, verified via cholera toxin detection in serum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.