Abstract

BackgroundA number of mosquito species in the Culex and Aedes genera prefer to lay eggs in Bermuda grass (Cynodon dactylon) hay infusions compared to water alone. These mosquitoes are attracted to volatile compounds from the hay infusions making the infusions effective baits in gravid traps used for monitoring vectors of arboviral and filarial pathogens. Since Bermuda grass is abundant and widespread, it is plausible to explore infusions made from it as a potential low cost bait for outdoor monitoring of the elusive malaria vector Anopheles gambiae s.s.MethodsThis study investigated preferential egg laying of individual An. gambiae s.s. in hay infusion or in tap water treated with volatiles detected in hay infusion headspace compared to tap water alone, using two-choice egg-count bioassays. Infusions were prepared by mixing 90 g of dried Bermuda grass (hay) with 24 L of unchlorinated tap water in a bucket, and leaving it for 3 days at ambient temperature and humidity. The volatiles in the headspace of the hay infusion were sampled with Tenax TA traps for 20 h and analysed using gas chromatography coupled to mass spectrometry.ResultsIn total, 18 volatiles were detected in the infusion headspace. Nine of the detected compounds and nonanal were selected for bioassays. Eight of the selected compounds have previously been suggested to attract/stimulate egg laying in An. gambiaes.s. Gravid females were significantly (p < 0.05) less likely to lay eggs in hay infusion dilutions of 25, 50 and 100 % and in tap water containing any of six compounds (3-methylbutanol, phenol, 4-methylphenol, nonanal, indole, and 3-methylindole) compared to tap water alone. The oviposition response to 10 % hay infusion or any one of the remaining four volatiles (4-hepten-1-ol, phenylmethanol, 2-phenylethanol, or 4-ethylphenol) did not differ from that in tap water.ConclusionsAnopheles gambiae s.s. prefers to lay eggs in tap water rather than Bermuda grass hay infusion. This avoidance of the hay infusion appears to be mediated by volatile organic compounds from the infusion. It is, therefore, unlikely that Bermuda grass hay infusion as formulated and used in gravid traps for Culex and Aedes mosquitoes will be suitable baits for monitoring gravid An. gambiae s.s.

Highlights

  • A number of mosquito species in the Culex and Aedes genera prefer to lay eggs in Bermuda grass (Cynodon dactylon) hay infusions compared to water alone

  • This study aimed to evaluate the egg-laying response of gravid An. gambiae s.s. to hay infusions made from Bermuda grass (Cynodon dactylon) and to identify the odorants released from the hay infusions that mediate the oviposition response of An. gambiae s.s. using behavioural two-choice cage bioassays and dynamic headspace collections analysed by gas chromatography coupled to mass spectrometry (GC–MS)

  • Oviposition response of Anopheles gambiae s.s. to hay infusion When two equal tap water choices were presented, eggs were laid in similar proportions in the control and test cups

Read more

Summary

Introduction

A number of mosquito species in the Culex and Aedes genera prefer to lay eggs in Bermuda grass (Cynodon dactylon) hay infusions compared to water alone. A number of important disease vectors, such as Aedes aegypti, Aedes albopictus, Culex quinquefasciatus and Culex tarsalis preferentially lay eggs in or near water bodies rich in organic matter [3,4,5,6,7]. For this reason, infusions that mimic these kind of oviposition sites [7] have been used as lures in gravid traps for detection and surveillance of mosquito-borne diseases such as dengue, dengue haemorrhagic fever and St. Louis encephalitis [8,9,10,11,12,13,14]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call