Abstract

We propose a machine-learning-based method for grating waveguides and augmented reality, significantly reducing the computation time compared with existing finite-element-based numerical simulation methods. Among the slanted, coated, interlayer, twin-pillar, U-shaped, and hybrid structure gratings, we exploit structural parameters such as grating slanted angle, grating depth, duty cycle, coating ratio, and interlayer thickness to construct the gratings. The multi-layer perceptron algorithm based on the Keras framework was used with a dataset comprised of 3000-14,000 samples. The training accuracy reached a coefficient of determination of more than 99.9% and an average absolute percentage error of 0.5%-2%. At the same time, the hybrid structure grating we built achieved a diffraction efficiency of 94.21% and a uniformity of 93.99%. This hybrid structure grating also achieved the best results in tolerance analysis. The high-efficiency artificial intelligence waveguide method proposed in this paper realizes the optimal design of a high-efficiency grating waveguide structure. It can provide theoretical guidance and technical reference for optical design based on artificial intelligence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.