Abstract

We present a theoretical analysis and experimental verification of a z-scanning double-grating interferometer for spatial coherence measurements in space-frequency and space-time domains. This interferometer permits the measurement of spatial coherence between an arbitrary pair of points along a one-dimensional line, and in favorable conditions, it has a high light efficiency compared to the classical Young's two-pinhole experiment. The scheme is applicable to both quasi-monochromatic and broadband sources that need not obey the Schell model. We first provide experimental results with several narrowband primary and secondary sources, and then apply the technique to broadband sources with discrete and continuous spectra. In the latter case, the complex degree of (time-domain) spatial coherence is retrieved from spectrally resolved measurements using the Friberg-Wolf theorem [Opt. Lett.20, 623 (1995)OPLEDP0146-959210.1364/OL.20.000623]. We compare all results to those obtained with Young's interferometer realized using a digital micromirror device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.