Abstract

In fluorescence microscopy, optical sectioning is defined as the attenuation or removal of out-of-focus features from an image, and it is a prerequisite for quantitative analysis of three-dimensional structure or function within the specimen. Optical sectioning is most commonly performed by confocal scanning fluorescence microscopy or two-photon scanning fluorescence microscopy. However, structured illumination can be used in conventional fluorescence microscopes to obtain optical sectioning performance, and, in advanced systems, 3D superresolution. The simplest structured-illumination system uses a Ronchi grating as a mask to project parallel stripes within the sharp depth-of-focus of the objective to encode in-focus specimen features differently from out-of-focus features. By shifting the grating, the in-focus image component can be discriminated and separated by elementary image processing operations. This implementation of structured illumination, the fluorescence grating imager, uses a conventional light source, is compatible with all high-quality fluorescence filter sets, and provides high optical-sectioning performance when used to image specimens in which (1) the out-of-focus image component is not much brighter than the in-focus features and (2) there is no significant movement in the specimen during the grating shift and image capture process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call