Abstract
We demonstrate how grating-coupler assisted infrared reflection absorption spectroscopy can be used to simultaneously determine the chemical identity and relative thickness of organic thin films. With a grating substrate, a threshold anomaly associated with passing off of the -1 diffracted order occurs at grazing angles of incidence, resulting in a sharp absorbance in the infrared. The position of this peak is sensitive to the grating geometry as well as the dielectric environment near its surface. Thus, shifts in the peak position can be used to determine the relative thickness of adsorbed films or quantify molecular adsorption events. To illustrate the characteristics and sensitivity of this phenomenon, several samples were prepared and tested, including self-assembled alkanethiolate monolayers with 11-mercaptoundecanoic acid, 11-mercapto-1-undecanol, decanethiol, and a covalently linked layer of bovine serum albumin on a commercial, gold-coated grating. For these samples, the position of the threshold absorbance peak shifted to lower wavenumbers as film thickness increased, which is consistent with calculated shifts based upon an increasing refractive index at the interface. The sensitivity of this shift was measured to be 3.7 cm(-1) nm(-1). These results illustrate how a grating substrate can be exploited in a standard infrared reflectance measurement to provide additional information about the relative thickness of adsorbed surface films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.