Abstract
A growing body of research on plant-microbe interactions in soil is con- tributing to the development of a new, microbially based perspective on plant community ecology. Soil-dwelling microorganisms are diverse, and interactions with plants vary with respect to specificity, environmental heterogeneity, and fitness impact. Two microbial pro- cesses that may exert key influences on plant community structure and dynamics are mi- crobial mediation of niche differentiation in resource use and feedback dynamics between the plant and soil community. The niche differentiation hypothesis is based on observations that soil nutrients occur in different chemical forms, that different enzymes are required for plant access to these nutrients, and that soil microorganisms are a major source of these enzymes. We predict that plant nutrient partitioning arises from differential associations of plant species with microbes able to access different nutrient pools. Feedback dynamics result from changes in the soil community generated by the specificity of response in plant- microbe interactions. We suggest that positive feedback between plants and soil microbes plays a central role in early successional communities, while negative feedback contributes both to species replacements and to diversification in later successional communities. We further suggest that plant-microbe interactions in the soil are an important organizing force for large-scale spatial gradients in species richness. The relative balance of positive feedback (a homogenizing force) and negative feedback (a diversifying force) may contribute to observed latitudinal (and altitudinal) diversity patterns. Empirical tests of these ideas are needed, but a microbially based perspective for plant ecology promises to contribute to our understanding of long-standing issues in ecology, and to reveal new areas of future research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.