Abstract

This paper considers the ergodic noncoherent capacity of a multiple-input multiple-output frequency-flat block Rayleigh fading full duplex relay channel at high signal-to-noise ratios (SNRs). It is shown that, for these SNRs, restricting the input distribution to be isotropic on a compact Grassmann manifold maximizes an upper bound on the cut-set bound. Furthermore, it is shown that, from a degrees of freedom point of view, no relaying is necessary and Grassmannian signalling at the source achieves the upper bound within an SNR-independent gap. When the source-relay channel is sufficiently stronger than the source-destination and relay-destination channels, it is shown that, with the number of relay transmit antennas appropriately chosen, a Grassmannian decode-and-forward scheme, which is devised herein, achieves the ergodic noncoherent capacity of the relay channel within an approximation gap that goes to zero as the SNR goes to infinity. Closed-form expressions for the optimal number of relay transmit antennas indicate that this number decreases monotonically with the source transmit power.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.