Abstract
This paper considers the ergodic noncoherent capacity of a multiple-input multiple-output frequency-flat block Rayleigh fading full duplex relay channel at high signal-to-noise ratios (SNRs). It is shown that, for these SNRs, restricting the input distribution to be isotropic on a compact Grassmann manifold maximizes an upper bound on the cut-set bound. Furthermore, it is shown that, from a degrees of freedom point of view, no relaying is necessary and Grassmannian signalling at the source achieves the upper bound within an SNR-independent gap. When the source-relay channel is sufficiently stronger than the source-destination and relay-destination channels, it is shown that, with the number of relay transmit antennas appropriately chosen, a Grassmannian decode-and-forward scheme, which is devised herein, achieves the ergodic noncoherent capacity of the relay channel within an approximation gap that goes to zero as the SNR goes to infinity. Closed-form expressions for the optimal number of relay transmit antennas indicate that this number decreases monotonically with the source transmit power.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.