Abstract
Subspace codes are known to be useful in error-correction for random network coding. Recently, they were used to prove that vector network codes outperform scalar linear network codes, on multicast networks, with respect to the alphabet size. In both cases, the subspace distance is used as the distance measure. In this work we show that we can replace the subspace distance with two other possible distance measures which generalize the subspace distance. We prove that each code with the largest number of codewords and the generalized distance, given the other parameters, has the minimum requirements needed to solve a given multicast network with a scalar linear code. We discuss lower and upper bounds on the sizes of the related codes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.