Abstract

The degree to which biodiversity may promote the stability of grasslands in the light of climatic variability, such as prolonged summer drought, has attracted considerable interest. Studies so far yielded inconsistent results and in addition, the effect of different grassland management practices on their response to drought remains an open question. We experimentally combined the manipulation of prolonged summer drought (sheltered vs. unsheltered sites), plant species loss (6 levels of 60 down to 1 species) and management intensity (4 levels varying in mowing frequency and amount of fertilizer application). Stability was measured as resistance and resilience of aboveground biomass production in grasslands against decreased summer precipitation, where resistance is the difference between drought treatments directly after drought induction and resilience is the difference between drought treatments in spring of the following year. We hypothesized that (i) management intensification amplifies biomass decrease under drought, (ii) resistance decreases with increasing species richness and with management intensification and (iii) resilience increases with increasing species richness and with management intensification.We found that resistance and resilience of grasslands to summer drought are highly dependent on management intensity and partly on species richness. Frequent mowing reduced the resistance of grasslands against drought and increasing species richness decreased resistance in one of our two study years. Resilience was positively related to species richness only under the highest management treatment. We conclude that low mowing frequency is more important for high resistance against drought than species richness. Nevertheless, species richness increased aboveground productivity in all management treatments both under drought and ambient conditions and should therefore be maintained under future climates.

Highlights

  • There is agreement that the world’s ecosystems will likely have to cope with future climatic changes, such as increased mean temperatures, a higher frequency of extreme weather events as well as changes in wind and precipitation patterns [1]

  • We found that resistance and resilience of grasslands to summer drought are highly dependent on management intensity and partly on species richness

  • Aboveground biomass was significantly lower under drought only in the frequently mown grasslands (M4F100, M4F200, Figure 2), i.e., the drought response of grasslands was affected by management intensity (Table 1)

Read more

Summary

Introduction

There is agreement that the world’s ecosystems will likely have to cope with future climatic changes, such as increased mean temperatures, a higher frequency of extreme weather events as well as changes in wind and precipitation patterns [1]. Aboveground plant biomass production, the most-studied process in biodiversity research, has been consistently found to rise in response to plant diversity in grasslands [6,7,8,9,10], an important finding for agricultural management. This positive relationship of species richness and productivity even holds under nutrient-rich conditions [11,12] and perturbations such as intense livestock grazing [13]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.